All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimation of Single-Gaussian and Gaussian Mixture Models for Pattern Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43920627" target="_blank" >RIV/49777513:23520/13:43920627 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-41822-8_7" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-41822-8_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41822-8_7" target="_blank" >10.1007/978-3-642-41822-8_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimation of Single-Gaussian and Gaussian Mixture Models for Pattern Recognition

  • Original language description

    Single-Gaussian and Gaussian-Mixture Models are utilized in various pattern recognition tasks. The model parameters are estimated usually via Maximum Likelihood Estimation (MLE) with respect to available training data. However, if only small amount of training data is available, the resulting model will not generalize well. Loosely speaking, classification performance given an unseen test set may be poor. In this paper, we propose a novel estimation technique of the model variances. Once the variances were estimated using MLE, they are multiplied by a scaling factor, which reflects the amount of uncertainty present in the limited sample set. The optimal value of the scaling factor is based on the Kullback-Leibler criterion and on the assumption that the training and test sets are sampled from the same source distribution. In addition, in the case of GMM, the proper number of components can be determined.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TA01011264" target="_blank" >TA01011264: Elimination of the language barriers faced by the handicapped watchers of the Czech Television II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Progress in Pattern Recognition, Image Analysis, ComputerVision, and Applications

  • ISBN

    978-3-642-41821-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    49-56

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Havana, Cuba

  • Event date

    Nov 20, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article