A Closure for 1-Hamilton-Connectedness in Claw-Free Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921912" target="_blank" >RIV/49777513:23520/14:43921912 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/jgt.21743" target="_blank" >http://dx.doi.org/10.1002/jgt.21743</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.21743" target="_blank" >10.1002/jgt.21743</a>
Alternative languages
Result language
angličtina
Original language name
A Closure for 1-Hamilton-Connectedness in Claw-Free Graphs
Original language description
In the article, we introduce a closure concept for 1-Hamilton-connectedness in claw-free graphs. If G' is a closure of a claw-free graph G, then G' is 1-Hamilton-connected if and only if G is 1-Hamilton-connected. As applications, we prove that Thomassen's Conjecture (every 4-connected line graph is hamiltonian) is equivalent to the statement that every 4-connected claw-free graph is 1-Hamilton-connected, and we present results showing that every 5-connected claw-free graph withminimum degree at least 6is 1-Hamilton-connected and that every 4-connected claw-free and hourglass-free graph is 1-Hamilton-connected.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
75
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
358-376
UT code for WoS article
—
EID of the result in the Scopus database
—