Anti-Models: An Alternative Way to Discriminative Training
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43923104" target="_blank" >RIV/49777513:23520/14:43923104 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-319-10816-2_54" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-10816-2_54</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-10816-2_54" target="_blank" >10.1007/978-3-319-10816-2_54</a>
Alternative languages
Result language
angličtina
Original language name
Anti-Models: An Alternative Way to Discriminative Training
Original language description
Traditional discriminative training methods modify Hidden Markov Model (HMM) parameters obtained via a Maximum Likelihood (ML) criterion based estimator. In this paper, anti-models are introduced instead. The anti-models are used in tandem with ML modelsto incorporate a discriminative information from training data set and modify the HMM output likelihood in a discriminative way. Traditional discriminative training methods are prone to over-fitting and require an extra stabilization. Also, convergenceis not ensured and usually "a proper" number of iterations is done. In the proposed anti-models concept, two parts, positive model and anti-model, are trained via ML criterion. Therefore, the convergence and the stability are ensured.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-319-10815-5
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
449-456
Publisher name
Springer
Place of publication
Heidelberg
Event location
Brno, Czech Republic
Event date
Sep 8, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—