P3 Component Detection Using HHT Improvement of EMD with Additional Stopping Criteria
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43923183" target="_blank" >RIV/49777513:23520/14:43923183 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-09891-3_10" target="_blank" >http://dx.doi.org/10.1007/978-3-319-09891-3_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-09891-3_10" target="_blank" >10.1007/978-3-319-09891-3_10</a>
Alternative languages
Result language
angličtina
Original language name
P3 Component Detection Using HHT Improvement of EMD with Additional Stopping Criteria
Original language description
This paper describes improvement of the Hilbert-Huang transform (HHT) for detection of ERP components in the EEG signal. Time-frequency domain methods, such as the wavelet transform or matching pursuit, are commonly for this task. We used a modified Hilbert-Huang transform that allows the processing of quasi-stationary signals such as EEG. The essential part of the HHT is an Empirical Mode Decomposition (EMD) that decomposes signal into intrinsic mode functions (IMFs). We designed additional stopping criteria for better selection of IMFs in the EMD. These IMFs positively affect later computed instantaneous attributes and increase classification success. We tested the influence of additional stopping criteria on classification reliability using the realEEG data acquired in our laboratory. Our results demonstrated that we were able to detect the P3 component by using the HHT with additional stopping criteria more successfully than by using the original implementation of modified HHT, co
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Brain Informatics and Health
ISBN
978-3-319-09890-6
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
100-110
Publisher name
Springer
Place of publication
Heidelberg
Event location
Warsaw
Event date
Aug 11, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—