Distances of centroid sets in a graph-based construction for information security applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925865" target="_blank" >RIV/49777513:23520/15:43925865 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007/s11786-015-0217-1" target="_blank" >http://link.springer.com/article/10.1007/s11786-015-0217-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11786-015-0217-1" target="_blank" >10.1007/s11786-015-0217-1</a>
Alternative languages
Result language
angličtina
Original language name
Distances of centroid sets in a graph-based construction for information security applications
Original language description
We prove that, for every balanced digraph, in every incidence semiring over a semifield, each centroid set J of the largest distance also has the largest weight, and the distance of J is equal to its weight. This result is surprising and unexpected, because examples show that distances of arbitrary centroid sets in incidence semirings may be strictly less than their weights. The investigation of the distances of centroid sets in incidence semirings of digraphs has been motivated by the information security applications of centroid sets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics in Computer Science
ISSN
1661-8270
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
127-137
UT code for WoS article
000356167700002
EID of the result in the Scopus database
—