All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hluboké a mělké neuronové sítě v rozpoznávání mluvené řeči z amplitudového spektra

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926604" target="_blank" >RIV/49777513:23520/15:43926604 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-23132-7_37" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-23132-7_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-23132-7_37" target="_blank" >10.1007/978-3-319-23132-7_37</a>

Alternative languages

  • Result language

    čeština

  • Original language name

    On Deep and Shallow Neural Networks in Speech Recognition from Speech Spectrum

  • Original language description

    This paper demonstrates how usual feature extraction methods such as the PLP can be successfully replaced by a neural network and how signal processing methods such as mean normalization, variance normalization and delta coefficients can be successfully utilized when a NN-based feature extraction and a NN-based acoustic model are used simultaneously. The importance of the deep NNs is also investigated. The system performance was evaluated on the British English speech corpus WSJCAM0.

  • Czech name

    On Deep and Shallow Neural Networks in Speech Recognition from Speech Spectrum

  • Czech description

    This paper demonstrates how usual feature extraction methods such as the PLP can be successfully replaced by a neural network and how signal processing methods such as mean normalization, variance normalization and delta coefficients can be successfully utilized when a NN-based feature extraction and a NN-based acoustic model are used simultaneously. The importance of the deep NNs is also investigated. The system performance was evaluated on the British English speech corpus WSJCAM0.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/DF12P01OVV022" target="_blank" >DF12P01OVV022: ASR- and MT-based Access to a Large Archive of Cultural Heritage (AMALACH)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer, 17th International Conference, SPECOM 2015, Athens, Greece, September 20-24,2015, Proceedings

  • ISBN

    978-3-319-23131-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    301-308

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Athens, Greece

  • Event date

    Sep 20, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000365866300037