On Continuous Space Word Representations as Input of LSTM Language Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926614" target="_blank" >RIV/49777513:23520/15:43926614 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-25789-1_25" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-25789-1_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-25789-1_25" target="_blank" >10.1007/978-3-319-25789-1_25</a>
Alternative languages
Result language
angličtina
Original language name
On Continuous Space Word Representations as Input of LSTM Language Model
Original language description
Artificial neural networks have become the state-of-the-art in the task of language modelling whereas Long-Short Term Memory (LSTM) networks seem to be an efficient architecture. The continuous skip-gram and the continuous bag of words (CBOW) are algorithms for learning quality distributed vector representations that are able to capture a large number of syntactic and semantic word relationships. In this paper, we carried out experiments with a combination of these powerful models: the continuous representations of words trained with skip-gram/CBOW /GloVe method, word cache expressed as a vector using latent Dirichlet allocation (LDA). These all are used on the input of LSTM network instead of 1-of-N coding traditionally used in language models. The proposed models are tested on Penn Treebank and MALACH corpus.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/DF12P01OVV022" target="_blank" >DF12P01OVV022: ASR- and MT-based Access to a Large Archive of Cultural Heritage (AMALACH)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Statistical Language and Speech Processing, Third International Conference, SLSP 2015, Budapest, Hungary, November 24-26, 2015. Proceedings
ISBN
978-3-319-25788-4
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
267-274
Publisher name
Springer
Place of publication
Heidelberg
Event location
Budapešť, Maďarsko
Event date
Nov 24, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—