All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Continuous Space Word Representations as Input of LSTM Language Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926614" target="_blank" >RIV/49777513:23520/15:43926614 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-25789-1_25" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-25789-1_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-25789-1_25" target="_blank" >10.1007/978-3-319-25789-1_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Continuous Space Word Representations as Input of LSTM Language Model

  • Original language description

    Artificial neural networks have become the state-of-the-art in the task of language modelling whereas Long-Short Term Memory (LSTM) networks seem to be an efficient architecture. The continuous skip-gram and the continuous bag of words (CBOW) are algorithms for learning quality distributed vector representations that are able to capture a large number of syntactic and semantic word relationships. In this paper, we carried out experiments with a combination of these powerful models: the continuous representations of words trained with skip-gram/CBOW /GloVe method, word cache expressed as a vector using latent Dirichlet allocation (LDA). These all are used on the input of LSTM network instead of 1-of-N coding traditionally used in language models. The proposed models are tested on Penn Treebank and MALACH corpus.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/DF12P01OVV022" target="_blank" >DF12P01OVV022: ASR- and MT-based Access to a Large Archive of Cultural Heritage (AMALACH)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Statistical Language and Speech Processing, Third International Conference, SLSP 2015, Budapest, Hungary, November 24-26, 2015. Proceedings

  • ISBN

    978-3-319-25788-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    267-274

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Budapešť, Maďarsko

  • Event date

    Nov 24, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article