Spectral analogues of Erdős' and Moon-Moser's theorems on Hamilton cycles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929132" target="_blank" >RIV/49777513:23520/16:43929132 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/03081087.2016.1151854" target="_blank" >http://dx.doi.org/10.1080/03081087.2016.1151854</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081087.2016.1151854" target="_blank" >10.1080/03081087.2016.1151854</a>
Alternative languages
Result language
angličtina
Original language name
Spectral analogues of Erdős' and Moon-Moser's theorems on Hamilton cycles
Original language description
In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number and minimum degree of graphs which generalized Ore's theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper, we present the spectral analogues of Erdős' theorem and Moon-Moser's theorem, respectively. Let G(k,n) be the class of non-Hamiltonian graphs of order n and minimum degree at least k. We determine the maximum (signless Laplacian) spectral radius of graphs in G(k,n) (for large enough n), and the minimum (signless Laplacian) spectral radius of the complements of graphs in G(k,n). We also solve similar problems for balanced bipartite graphs and the quasi-complements.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
LINEAR & MULTILINEAR ALGEBRA
ISSN
0308-1087
e-ISSN
—
Volume of the periodical
64
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
2252-2269
UT code for WoS article
000382279100011
EID of the result in the Scopus database
2-s2.0-84983559816