All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral analogues of Erdős' and Moon-Moser's theorems on Hamilton cycles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929132" target="_blank" >RIV/49777513:23520/16:43929132 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/03081087.2016.1151854" target="_blank" >http://dx.doi.org/10.1080/03081087.2016.1151854</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03081087.2016.1151854" target="_blank" >10.1080/03081087.2016.1151854</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral analogues of Erdős' and Moon-Moser's theorems on Hamilton cycles

  • Original language description

    In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number and minimum degree of graphs which generalized Ore's theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper, we present the spectral analogues of Erdős' theorem and Moon-Moser's theorem, respectively. Let G(k,n) be the class of non-Hamiltonian graphs of order n and minimum degree at least k. We determine the maximum (signless Laplacian) spectral radius of graphs in G(k,n) (for large enough n), and the minimum (signless Laplacian) spectral radius of the complements of graphs in G(k,n). We also solve similar problems for balanced bipartite graphs and the quasi-complements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    LINEAR &amp; MULTILINEAR ALGEBRA

  • ISSN

    0308-1087

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    2252-2269

  • UT code for WoS article

    000382279100011

  • EID of the result in the Scopus database

    2-s2.0-84983559816