Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929390" target="_blank" >RIV/49777513:23520/16:43929390 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities
Original language description
We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BI - Acoustics and oscillation
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP101%2F12%2F2315" target="_blank" >GAP101/12/2315: Modelling of acoustic wave propagation in strongly heterogeneous media; multi-scale numerical and analytical approaches</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPTES RENDUS MECANIQUE
ISSN
1631-0721
e-ISSN
—
Volume of the periodical
344
Issue of the periodical within the volume
June 2016
Country of publishing house
FR - FRANCE
Number of pages
13
Pages from-to
569-581
UT code for WoS article
000379688500004
EID of the result in the Scopus database
2-s2.0-84973865964