All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimal Active Fault Diagnosis by Temporal-Difference Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929733" target="_blank" >RIV/49777513:23520/16:43929733 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CDC.2016.7798581" target="_blank" >http://dx.doi.org/10.1109/CDC.2016.7798581</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CDC.2016.7798581" target="_blank" >10.1109/CDC.2016.7798581</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimal Active Fault Diagnosis by Temporal-Difference Learning

  • Original language description

    In this paper, a novel solution to the active fault diagnosis problem for stochastic linear Markovian switching systems on the infinite-time horizon is proposed. The imperfect state information problem of designing an active fault detector that minimizes a general detection cost criterion is reformulated as the perfect state information problem using sufficient statistics. The reformulation decreases theoretical complexity and enables to find a suboptimal solution by dynamic programming. However, classical approaches are computationally complex or fail to identify the most representative states of the system. This paper combines the active fault detection, state estimation, and reinforcement learning. In the proposed algorithm, temporal difference learning is used to train the active fault detector based on input-output data from the system simulation. The designed detector can be then used online. A numerical example is presented to verify the proposed algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 55th IEEE Conference on Decision and Control (CDC)

  • ISBN

    978-1-5090-1837-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    2146-2151

  • Publisher name

    IEEE

  • Place of publication

    neuveden

  • Event location

    Las Vegas, USA

  • Event date

    Dec 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000400048102053