All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Influence of the Number of Anomalous and Normal Examples in Anomaly-Based Annotation Errors Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929880" target="_blank" >RIV/49777513:23520/16:43929880 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-45510-5_37" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-45510-5_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-45510-5_37" target="_blank" >10.1007/978-3-319-45510-5_37</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Influence of the Number of Anomalous and Normal Examples in Anomaly-Based Annotation Errors Detection

  • Original language description

    Anomaly detection techniques were shown to help in detecting word-level annotation errors in read-speech corpora for text-to-speech synthesis. In this framework, correctly annotated words are considered as normal examples on which the detection methods are trained. Misannotated words are then taken as anomalous examples which do not conform to normal patterns of the trained detection models. As it could be hard to collect a sufficient number of examples to train and optimize an anomaly detector, in this paper we investigate the influence of the number of anomalous and normal examples on the detection accuracy of several anomaly detection models: Gaussian distribution based models, one-class support vector machines, and Grubbs’ test based model. Our experiments show that the number of examples can be significantly reduced without a large drop in detection accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA16-04420S" target="_blank" >GA16-04420S: Combining phonetic and corpus-based approaches to remedy disruptive effects in synthetic speech</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 19th International Conference, TSD 2016, Brno , Czech Republic, September 12-16, 2016, Proceedings

  • ISBN

    978-3-319-45509-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    326-334

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Brno, Česká republika

  • Event date

    Sep 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389707400037