On the Influence of the Number of Anomalous and Normal Examples in Anomaly-Based Annotation Errors Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929880" target="_blank" >RIV/49777513:23520/16:43929880 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-45510-5_37" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-45510-5_37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45510-5_37" target="_blank" >10.1007/978-3-319-45510-5_37</a>
Alternative languages
Result language
angličtina
Original language name
On the Influence of the Number of Anomalous and Normal Examples in Anomaly-Based Annotation Errors Detection
Original language description
Anomaly detection techniques were shown to help in detecting word-level annotation errors in read-speech corpora for text-to-speech synthesis. In this framework, correctly annotated words are considered as normal examples on which the detection methods are trained. Misannotated words are then taken as anomalous examples which do not conform to normal patterns of the trained detection models. As it could be hard to collect a sufficient number of examples to train and optimize an anomaly detector, in this paper we investigate the influence of the number of anomalous and normal examples on the detection accuracy of several anomaly detection models: Gaussian distribution based models, one-class support vector machines, and Grubbs’ test based model. Our experiments show that the number of examples can be significantly reduced without a large drop in detection accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA16-04420S" target="_blank" >GA16-04420S: Combining phonetic and corpus-based approaches to remedy disruptive effects in synthetic speech</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Text, Speech, and Dialogue 19th International Conference, TSD 2016, Brno , Czech Republic, September 12-16, 2016, Proceedings
ISBN
978-3-319-45509-9
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
326-334
Publisher name
Springer
Place of publication
Heidelberg
Event location
Brno, Česká republika
Event date
Sep 12, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000389707400037