Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931422" target="_blank" >RIV/49777513:23520/17:43931422 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-45123-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45123-7_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45123-7_2" target="_blank" >10.1007/978-3-319-45123-7_2</a>
Alternative languages
Result language
angličtina
Original language name
Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data
Original language description
Depicting a large number of points on a map may lead to overplotting and to a visual clutter. One of the widely accepted visualization methods that provides a good overview of a spatial distribution of a large number of points is a heat map. Interactions for efficient data exploration, such as zooming, filtering or parameters’ adjustments, are highly demanding on the heat map construction. This is true especially in the case of big data. In this paper, we focus on a novel approach of estimating the kernel density and heat map visualization by utilizing a graphical processing unit (GPU). We designed a web-based JavaScript library dedicated to heat map rendering and user interactions through WebGL. The designed library enables to render a heat map as an overlay over a background map provided by a third party API (e.g. Open Layers) in the scope of milliseconds, even for data size exceeding one million points. In order to validate our approach, we designed a demo application visualizing a car accident dataset in the Great Britain. The described solution proves fast rendering times (below 100 ms) even for dataset up to 1.5 million points and outperforms mainstream systems such as the Google Maps API, Leaflet heat map plugin or ESRI’s ArcGIS online. Such performance enables interactive adjustments of the heat map parameters required by various domain experts. The described implementation is a part of the WebGLayer open source information visualization library.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The Rise of Big Spatial Data
ISBN
978-3-319-45122-0
ISSN
1863-2246
e-ISSN
1863-2351
Number of pages
14
Pages from-to
13-26
Publisher name
Springer
Place of publication
Heidelberg
Event location
Ostrava
Event date
Mar 16, 2016
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000419321700002