All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931422" target="_blank" >RIV/49777513:23520/17:43931422 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-45123-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45123-7_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-45123-7_2" target="_blank" >10.1007/978-3-319-45123-7_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data

  • Original language description

    Depicting a large number of points on a map may lead to overplotting and to a visual clutter. One of the widely accepted visualization methods that provides a good overview of a spatial distribution of a large number of points is a heat map. Interactions for efficient data exploration, such as zooming, filtering or parameters’ adjustments, are highly demanding on the heat map construction. This is true especially in the case of big data. In this paper, we focus on a novel approach of estimating the kernel density and heat map visualization by utilizing a graphical processing unit (GPU). We designed a web-based JavaScript library dedicated to heat map rendering and user interactions through WebGL. The designed library enables to render a heat map as an overlay over a background map provided by a third party API (e.g. Open Layers) in the scope of milliseconds, even for data size exceeding one million points. In order to validate our approach, we designed a demo application visualizing a car accident dataset in the Great Britain. The described solution proves fast rendering times (below 100 ms) even for dataset up to 1.5 million points and outperforms mainstream systems such as the Google Maps API, Leaflet heat map plugin or ESRI’s ArcGIS online. Such performance enables interactive adjustments of the heat map parameters required by various domain experts. The described implementation is a part of the WebGLayer open source information visualization library.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The Rise of Big Spatial Data

  • ISBN

    978-3-319-45122-0

  • ISSN

    1863-2246

  • e-ISSN

    1863-2351

  • Number of pages

    14

  • Pages from-to

    13-26

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Ostrava

  • Event date

    Mar 16, 2016

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000419321700002