All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluation of Local Descriptors for Automatic Image Annotation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931925" target="_blank" >RIV/49777513:23520/17:43931925 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5220/0006194305270534" target="_blank" >http://dx.doi.org/10.5220/0006194305270534</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0006194305270534" target="_blank" >10.5220/0006194305270534</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluation of Local Descriptors for Automatic Image Annotation

  • Original language description

    In this paper we aim at evaluation of three local descriptors for the automatic image annotation (AIA) task. LBP, POEM and LDP descriptors are successfully used in many other domains such as face recognition. However, the utilization of them in the AIA field is rather infrequent. The annotation algorithm is based on the K-nearest neighbours (KNN) classifier where labels from K most similar images are “transferred” to the annotated one. We propose a label transfer method that assigns variable number of labels to each image. It is compared with an existing approach using constant number of labels. The proposed method is evaluated on three image datasets: Li photography, IAPR-TC12 and ESP. We show that the results of the utilized local descriptors are comparable to, and in many cases outperform the texture features usually used in AIA. We also show that the proposed label transfer method can increase the overall system performance especially for the IAPR-TC12 dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017)

  • ISBN

    978-989-758-220-2

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    8

  • Pages from-to

    527-534

  • Publisher name

    SciTePress

  • Place of publication

    Setúbal

  • Event location

    Porto

  • Event date

    Feb 24, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000413244200055