Convolutional Neural Network for speaker change detection in telephone speaker diarization system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932069" target="_blank" >RIV/49777513:23520/17:43932069 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/document/7953097/" target="_blank" >http://ieeexplore.ieee.org/document/7953097/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2017.7953097" target="_blank" >10.1109/ICASSP.2017.7953097</a>
Alternative languages
Result language
angličtina
Original language name
Convolutional Neural Network for speaker change detection in telephone speaker diarization system
Original language description
The aim of this paper is to propose a speaker change detection technique based on Convolutional Neural Network (CNN) and evaluate its contribution to the performance of a speaker diarization system for telephone conversations. For the comparison we used an i-vector based speaker diarization system. The baseline speaker change detection uses Generalized Likelihood Ratio (GLR) metric. Experiments were conducted on the English part of the CallHome corpus. Our proposed CNN speaker change detection outperformed the GLR approach, reducing the Equal Error Rate relatively by 46 %. The final results on speaker diarization system indicate that the use of speaker change detection based on CNN is beneficial with relative improvement of diarization error rate by 28 %.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on
ISBN
978-1-5090-4117-6
ISSN
1520-6149
e-ISSN
neuvedeno
Number of pages
5
Pages from-to
4945-4949
Publisher name
IEEE Signal Processing Society
Place of publication
New York
Event location
New Orleans, LA, USA
Event date
Mar 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000414286205021