Big geo data surface approximation using radial basis functions: A comparative study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932155" target="_blank" >RIV/49777513:23520/17:43932155 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cageo.2017.08.007" target="_blank" >http://dx.doi.org/10.1016/j.cageo.2017.08.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cageo.2017.08.007" target="_blank" >10.1016/j.cageo.2017.08.007</a>
Alternative languages
Result language
angličtina
Original language name
Big geo data surface approximation using radial basis functions: A comparative study
Original language description
Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless methods for large scattered spatio-temporal vector data visualization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computers & Geosciences
ISSN
0098-3004
e-ISSN
—
Volume of the periodical
109
Issue of the periodical within the volume
December 2017
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
51-58
UT code for WoS article
000415663200006
EID of the result in the Scopus database
2-s2.0-85027709533