Perfect matchings of regular bipartite graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932297" target="_blank" >RIV/49777513:23520/17:43932297 - isvavai.cz</a>
Result on the web
<a href="http://onlinelibrary.wiley.com/doi/10.1002/jgt.22076/pdf" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/jgt.22076/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22076" target="_blank" >10.1002/jgt.22076</a>
Alternative languages
Result language
angličtina
Original language name
Perfect matchings of regular bipartite graphs
Original language description
Let G be a regular bipartite graph and X ⊆ E (G). We show that there exist perfect matchings of G containing both, an odd and an even number of edges from X if and only if the signed graph (G, X ) is not equivalent to (G, ∅). In fact, we prove that for a given signed regular bipartite graph with minimum signature, it is possible to find perfect matchings that contain exactly no negative edges or an arbitrary one preselected negative edge.Moreover, if the underlying graph is cubic, there exists a perfect matching with exactly two preselected negative edges.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
525-532
UT code for WoS article
000402151300015
EID of the result in the Scopus database
—