Characterisation of graphs with exclusive sum labelling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932376" target="_blank" >RIV/49777513:23520/17:43932376 - isvavai.cz</a>
Result on the web
<a href="http://ajc.maths.uq.edu.au/?page=get_volumes&volume=69" target="_blank" >http://ajc.maths.uq.edu.au/?page=get_volumes&volume=69</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Characterisation of graphs with exclusive sum labelling
Original language description
IA sum graph G is a graph with a mapping of the vertex set of G onto a set of positive integers S in such a way that two vertices of G are adjacent if and only if the sum of their labels is an element of S. In an exclusive sum graph the integers of S that are the sum of two other integers of S form a set of integers that label a collection of isolated vertices associated with the graph G. A graph bears a k-exclusive sum labelling (abbreviated k-ESL), if the set of isolated vertices is of cardinality k. In this paper, observing that the property of having a k-ESL is hereditary, we provide a characterisation of graphs that have a k-exclusive sum labelling, for any positive integer k, in terms of describing a universal graph for the property. Full versinn of the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Australasian Journal of Combinatorics
ISSN
2202-3518
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
3
Country of publishing house
AU - AUSTRALIA
Number of pages
15
Pages from-to
334-348
UT code for WoS article
000412392300005
EID of the result in the Scopus database
2-s2.0-85030834773