Two-Level Neural Network for Multi-label Document Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932624" target="_blank" >RIV/49777513:23520/17:43932624 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-68612-7_42" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68612-7_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68612-7_42" target="_blank" >10.1007/978-3-319-68612-7_42</a>
Alternative languages
Result language
angličtina
Original language name
Two-Level Neural Network for Multi-label Document Classification
Original language description
This paper deals with multi-label document classification using neural networks. We propose a novel neural network which is composed of two sub-nets: the first one estimates the scores for all classes, while the second one determines the number of classes assigned to the document. The proposed approach is evaluated on Czech and English standard corpora. The experimental results show that the proposed method is competitive with state of the art on both languages.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2017
ISBN
978-3-319-68611-0
ISSN
—
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
368-375
Publisher name
Springer
Place of publication
Cham
Event location
Alghero, Italy
Event date
Sep 11, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—