All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932939" target="_blank" >RIV/49777513:23520/17:43932939 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.aclweb.org/anthology/W/W17/W17-5021.pdf" target="_blank" >http://www.aclweb.org/anthology/W/W17/W17-5021.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/W17-5021" target="_blank" >10.18653/v1/W17-5021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques

  • Original language description

    We summarize the involvement of our CEMI team in the Native Language Identification shared task, NLI Shared Task~2017, which deals with both textual and speech input data. We submitted the results achieved by using three different system architectures; each of them combines multiple supervised learning models trained on various feature sets. As expected, better results are achieved with the systems that use both the textual data and the spoken responses. Combining the input data of two different modalities led to a rather dramatic improvement in classification performance. Our best performing method is based on a set of feed-forward neural networks whose hidden-layer outputs are combined together using a softmax layer. We achieved a macro-averaged F1 score of 0.9257 on the evaluation (unseen) test set and our team placed first in the main task together with other three teams.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů