All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lithospheric stress tensor from gravity and lithospheric structure models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43933110" target="_blank" >RIV/49777513:23520/17:43933110 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00024-017-1538-6" target="_blank" >http://dx.doi.org/10.1007/s00024-017-1538-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00024-017-1538-6" target="_blank" >10.1007/s00024-017-1538-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lithospheric stress tensor from gravity and lithospheric structure models

  • Original language description

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pure and Applied Geophysics

  • ISSN

    0033-4553

  • e-ISSN

  • Volume of the periodical

    174

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    2677-2688

  • UT code for WoS article

    000404796700013

  • EID of the result in the Scopus database

    2-s2.0-85021722248