Cross-Lingual SRL Based upon Universal Dependencies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43949766" target="_blank" >RIV/49777513:23520/17:43949766 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.26615/978-954-452-049-6_077" target="_blank" >http://dx.doi.org/10.26615/978-954-452-049-6_077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26615/978-954-452-049-6_077" target="_blank" >10.26615/978-954-452-049-6_077</a>
Alternative languages
Result language
angličtina
Original language name
Cross-Lingual SRL Based upon Universal Dependencies
Original language description
In this paper, we introduce a cross-lingual Semantic Role Labeling (SRL) systém with language independent features based upon Universal Dependencies. We propose two methods to convert SRL annotations from monolingual dependency trees into universal dependency trees. Our SRL system is based upon cross-lingual features derived from universal dependency trees and supervised learning that utilizes a maximum entropy classifier. We design experiments to verify whether the Universal Dependencies are suitable for the cross-lingual SRL. The results are very promising and they open new interesting research paths for the future.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Natural Language Processing Meet Deep Learning Proceedings
ISBN
978-954-452-048-9
ISSN
1313-8502
e-ISSN
neuvedeno
Number of pages
9
Pages from-to
592-690
Publisher name
INCOMA Ltd.
Place of publication
Shoumen
Event location
Varna
Event date
Sep 2, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—