Kantorovich-Type Theorems for Generalized Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43951396" target="_blank" >RIV/49777513:23520/18:43951396 - isvavai.cz</a>
Result on the web
<a href="http://www.heldermann-verlag.de/jca/jca25/jca1658-b.pdf" target="_blank" >http://www.heldermann-verlag.de/jca/jca25/jca1658-b.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Kantorovich-Type Theorems for Generalized Equations
Original language description
We study convergence of the Newton method for solving generalized equations with a continuous but not necessarily smooth single-valued part and a set-valued mapping with closed graph, both acting in Banach spaces. We present a Kantorovich-type theorem concerning r-linear convergence for a general algorithmic strategy covering both nonsmooth and smooth cases. Under various conditions we obtain higher-order convergence. Examples and computational experiments illustrate the theoretical results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA15-00735S" target="_blank" >GA15-00735S: Stability analysis of optima and equilibria in economics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF CONVEX ANALYSIS
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
459-486
UT code for WoS article
000433383300008
EID of the result in the Scopus database
—