Deep Neural Networks for Czech Multi-label Document Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952035" target="_blank" >RIV/49777513:23520/18:43952035 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-75487-1_36" target="_blank" >http://dx.doi.org/10.1007/978-3-319-75487-1_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-75487-1_36" target="_blank" >10.1007/978-3-319-75487-1_36</a>
Alternative languages
Result language
angličtina
Original language name
Deep Neural Networks for Czech Multi-label Document Classification
Original language description
This paper is focused on automatic multi-label document classification of Czech text documents. The current approaches usually use some preprocessing which can have negative impact. Therefore, we would like to omit it and use deep neural networks that learn from simple features. This choice was motivated by their successful usage in many other machine learning fields. Two different networks are compared: the first one is a standard multi-layer perceptron, while the second one is a popular convolutional network. The experiments on a Czech newspaper corpus show that both networks significantly outperform baseline method which uses a rich set of features with maximum entropy classifier. We have also shown that convolutional network gives the best results.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational Linguistics and Intelligent Text Processing
ISBN
978-3-319-75486-4
ISSN
0302-9743
e-ISSN
neuvedeno
Number of pages
12
Pages from-to
460-471
Publisher name
Springer International Publishing AG,
Place of publication
Switzerland, Cham
Event location
Konya, Turkey
Event date
Apr 3, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—