All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Neural Networks for Czech Multi-label Document Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952035" target="_blank" >RIV/49777513:23520/18:43952035 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-75487-1_36" target="_blank" >http://dx.doi.org/10.1007/978-3-319-75487-1_36</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-75487-1_36" target="_blank" >10.1007/978-3-319-75487-1_36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Neural Networks for Czech Multi-label Document Classification

  • Original language description

    This paper is focused on automatic multi-label document classification of Czech text documents. The current approaches usually use some preprocessing which can have negative impact. Therefore, we would like to omit it and use deep neural networks that learn from simple features. This choice was motivated by their successful usage in many other machine learning fields. Two different networks are compared: the first one is a standard multi-layer perceptron, while the second one is a popular convolutional network. The experiments on a Czech newspaper corpus show that both networks significantly outperform baseline method which uses a rich set of features with maximum entropy classifier. We have also shown that convolutional network gives the best results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Linguistics and Intelligent Text Processing

  • ISBN

    978-3-319-75486-4

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    460-471

  • Publisher name

    Springer International Publishing AG,

  • Place of publication

    Switzerland, Cham

  • Event location

    Konya, Turkey

  • Event date

    Apr 3, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article