State estimate consistency monitoring in Gaussian filtering framework
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952473" target="_blank" >RIV/49777513:23520/18:43952473 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.sigpro.2018.02.013" target="_blank" >https://doi.org/10.1016/j.sigpro.2018.02.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2018.02.013" target="_blank" >10.1016/j.sigpro.2018.02.013</a>
Alternative languages
Result language
angličtina
Original language name
State estimate consistency monitoring in Gaussian filtering framework
Original language description
The paper deals with the state estimation of the nonlinear stochastic dynamic systems by inherently approximate Gaussian filters. In particular, the stress is laid on the evaluation of the Gaussian filter state estimate consistency, which is a key indicator of the filter correct functionality and, thus, vital information for safety-critical applications. A novel on-line state estimate consistency monitoring test is proposed. Compared to the state-of-the-art tests, the proposed test directly works in the state-space domain without an assumption on the known true system state. Design of the test is free of specification or tuning of any threshold by the user. The proposed test is thoroughly analysed and compared with other tests on a theoretical and simulation basis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GC16-19999J" target="_blank" >GC16-19999J: Cooperative Approaches to Design of Nonlinear Filters</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Signal Processing
ISSN
0165-1684
e-ISSN
—
Volume of the periodical
148
Issue of the periodical within the volume
July 2018
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
145-156
UT code for WoS article
000428824600014
EID of the result in the Scopus database
2-s2.0-85042300699