Towards Network Simplification for Low-Cost Devices by Removing Synapses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952603" target="_blank" >RIV/49777513:23520/18:43952603 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-99579-3_7" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-99579-3_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-99579-3_7" target="_blank" >10.1007/978-3-319-99579-3_7</a>
Alternative languages
Result language
angličtina
Original language name
Towards Network Simplification for Low-Cost Devices by Removing Synapses
Original language description
The deployment of robust neural network based models on low-cost devices touches the problem with hardware constraints like limited memory footprint and computing power. This work presents a general method for a rapid reduction of parameters (80–90%) in a trained (DNN or LSTM) network by removing its redundant synapses, while the classification accuracy is not significantly hurt. The massive reduction of parameters leads to a notable decrease of the model’s size and the actual prediction time of on-board classifiers. We show the pruning results on a simple speech recognition task, however, the method is applicable to any classification data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Speech and Computer 20th International Conference, SPECOM 2018 Leipzig, Germany, September 18–22, 2018, Proceedings
ISBN
978-3-319-99578-6
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
10
Pages from-to
58-67
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Leipzig, Germany
Event date
Sep 18, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—