All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Benefit of Document Embedding in Unsupervised Document Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952604" target="_blank" >RIV/49777513:23520/18:43952604 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-99579-3_49" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-99579-3_49</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99579-3_49" target="_blank" >10.1007/978-3-319-99579-3_49</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Benefit of Document Embedding in Unsupervised Document Classification

  • Original language description

    The aim of this article is to show that the document embedding using the doc2vec algorithm can substantially improve the performance of the standard method for unsupervised document classification -- the K-means clustering. We have performed rather extensive set of experiments on one English and two Czech datasets and the results suggest that representing the documents using vectors generated by the doc2vec algorithm brings a consistent improvement across languages and datasets. The English dataset -- 20NewsGroups -- was processed in a way that allows direct comparison with the results of both supervised and unsupervised algorithms published previously. Such comparison is provided in the paper, together with the results of supervised classification achieved by the state-of-the-art SVM classifier.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer 20th International Conference, SPECOM 2018 Leipzig, Germany, September 18-22, 2018 Proceedings

  • ISBN

    978-3-319-99578-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    470-478

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Leipzig, Germany

  • Event date

    Sep 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article