All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LipsID Using 3D Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952608" target="_blank" >RIV/49777513:23520/18:43952608 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-99579-3_22" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-99579-3_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99579-3_22" target="_blank" >10.1007/978-3-319-99579-3_22</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    LipsID Using 3D Convolutional Neural Networks

  • Original language description

    This paper presents a proposition for a method inspired by iVectors for improvement of visual speech recognition in the similar way iVectors are used to improve the recognition rate of audio speech recognition. A neural network for feature extraction is presented with training parameters and evaluation. The network is trained as a classifier for a closed set of 64 speakers from the UWB-HSCAVC dataset and then the last softmax fully connected layer is removed to gain a feature vector of size 256. The network is provided with sequences of 15 frames and outputs the softmax classification to 64 classes. The training data consists of approximately 20000 sequences of grayscale images from the first 50 sentences that are common to every speaker. The network is then evaluated on the 60000 sequences created from 150 sentences from each speaker. The testing sentences are different for each speaker.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer 20th International Conference, SPECOM 2018 Leipzig, Germany, September 18–22, 2018, Proceedings

  • ISBN

    978-3-319-99578-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    6

  • Pages from-to

    209-214

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Leipzig, Germany

  • Event date

    Sep 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article