All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multimodal speech recognition: increasing accuracy using high speed video data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952641" target="_blank" >RIV/49777513:23520/18:43952641 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s12193-018-0267-1" target="_blank" >http://dx.doi.org/10.1007/s12193-018-0267-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12193-018-0267-1" target="_blank" >10.1007/s12193-018-0267-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multimodal speech recognition: increasing accuracy using high speed video data

  • Original language description

    To date, multimodal speech recognition systems based on the processing of audio and video signals show significantly better results than their unimodal counterparts. In general, researchers divide the solution of the audio–visual speech recognition problem into two parts. First, in extracting the most informative features from each modality and second, in the most successful way of fusion both modalities. Ultimately, this leads to an improvement in the accuracy of speech recognition. Almost all modern studies use this approach with video data of a standard recording speed of 25 frames per second. The choice of such a recording speed is easily explained, since the vast majority of existing audio–visual databases are recorded with this rate. However, it should be noticed that the number of 25 frames per second is a world standard for many areas and has never been specifically calculated for speech recognition tasks. The main purpose of this study is to investigate the effect brought by the high-speed video data (up to 200 frames per second) on the speech recognition accuracy. And also to find out whether the use of a high-speed video camera makes the speech recognition systems more robust to acoustical noise. To this end, we recorded a database of audio–visual Russian speech with high-speed video recordings, which consists of records of 20 speakers, each of them pronouncing 200 phrases of continuous Russian speech. Experiments performed on this database showed an improvement in the absolute speech recognition rate up to 3.10%. We also proved that the use of the high-speed camera with 200 fps allows achieving better recognition results under different acoustically noisy conditions (signal-to-noise ratio varied between 40 and 0 dB) with different types of noise (e.g. white noise, babble noise).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal on Multimodal User Interfaces

  • ISSN

    1783-7677

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    319-328

  • UT code for WoS article

    000448519400006

  • EID of the result in the Scopus database

    2-s2.0-85051679221