All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LSTM Neural Network for Speaker Change Detection in Telephone Conversations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952855" target="_blank" >RIV/49777513:23520/18:43952855 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-99579-3_24" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-99579-3_24</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99579-3_24" target="_blank" >10.1007/978-3-319-99579-3_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    LSTM Neural Network for Speaker Change Detection in Telephone Conversations

  • Original language description

    In this paper, we analyze an approach to speaker change detection in telephone conversations based on recurrent Long Short-Term Memory Neural Networks. We compare this approach to speaker change detection via Convolutional Neural Networks. We show that by finetuning the architecture and using suitable input data in the form of spectrograms, we obtain better results relatively by 2%.We have discovered that a smaller architecture performs better on unseen data. Also, we found out that using stateful LSTM layers that try to remember whole conversations is much worse than using recurrent networks that memorize only small sequences of speech.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer 20th International Conference, SPECOM 2018 Leipzig, Germany, September 18–22, 2018, Proceedings

  • ISBN

    978-3-319-99578-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    8

  • Pages from-to

    226-233

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Leipzig, Germany

  • Event date

    Sep 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article