Conjecture on Fučík Curve Asymptotes for a Particular Discrete Operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43953092" target="_blank" >RIV/49777513:23520/18:43953092 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-75647-9_20" target="_blank" >http://dx.doi.org/10.1007/978-3-319-75647-9_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-75647-9_20" target="_blank" >10.1007/978-3-319-75647-9_20</a>
Alternative languages
Result language
angličtina
Original language name
Conjecture on Fučík Curve Asymptotes for a Particular Discrete Operator
Original language description
In this paper we study properties of the Neumann discrete problem. We investigate so called polar Pareto spectrum of a specific matrix which represents the Neumann discrete operator. There is a known relation between polar Pareto spectrum of any discrete operator and its Fučík spectrum. We also state a conjecture about asymptotes of Fučík curves with respect to the matrix and we illustrate a variety of polar Pareto eigenvectors corresponding to a fixed polar Pareto eigenvalue.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Differential and Difference Equations with Applications
ISBN
978-3-319-75646-2
ISSN
2194-1009
e-ISSN
2194-1017
Number of pages
11
Pages from-to
247-257
Publisher name
Springer Proceedings in Mathematics & Statistics
Place of publication
Cham, Switzerland
Event location
Amadora, Portugal
Event date
Jun 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—