All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Density of singular pairs of integers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43953208" target="_blank" >RIV/49777513:23520/18:43953208 - isvavai.cz</a>

  • Result on the web

    <a href="http://math.colgate.edu/~integers/vol18.html" target="_blank" >http://math.colgate.edu/~integers/vol18.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Density of singular pairs of integers

  • Original language description

    An ordered pair of integers (m,n) is called singular if g.c.d.(m,phi(n))=1=g.c.d.(phi(m),n), a concept which is relevant to pairwise products of cyclic groups. In this note we show that the number of singular pairs is asymptotic to z(x)^2, where z(x) is a function derived by P. Erdos (1947) giving the asymptotics for the number of singular integers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Integers

  • ISSN

    1553-1732

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    Neuvedeno

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    "Neuvedeno"

  • UT code for WoS article

  • EID of the result in the Scopus database