Quasilinear eigenvalue problems with singular weights for the p-Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43953147" target="_blank" >RIV/49777513:23520/19:43953147 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10231-018-0811-3" target="_blank" >https://link.springer.com/article/10.1007/s10231-018-0811-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-018-0811-3" target="_blank" >10.1007/s10231-018-0811-3</a>
Alternative languages
Result language
angličtina
Original language name
Quasilinear eigenvalue problems with singular weights for the p-Laplacian
Original language description
In this paper we study quasilinear homogeneous eigenvalue problem with the p-Laplacian involving singular weights. We work on a bounded domain with Lipschitzian boundary and the weights are negative powers of the distance from the boundary. We generalize results concerning the existence and properties of the principal eigenvalue and corresponding eigenfunctions for both quasilinear unweighted case and singular linear case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANNALI DI MATEMATICA PURA ED APPLICATA
ISSN
0373-3114
e-ISSN
—
Volume of the periodical
198
Issue of the periodical within the volume
4
Country of publishing house
IT - ITALY
Number of pages
18
Pages from-to
1069-1086
UT code for WoS article
000477926800001
EID of the result in the Scopus database
2-s2.0-85057602062