Training Strategies for OCR Systems for Historical Documents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955252" target="_blank" >RIV/49777513:23520/19:43955252 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-19823-7_30" target="_blank" >http://dx.doi.org/10.1007/978-3-030-19823-7_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19823-7_30" target="_blank" >10.1007/978-3-030-19823-7_30</a>
Alternative languages
Result language
angličtina
Original language name
Training Strategies for OCR Systems for Historical Documents
Original language description
This paper presents an overview of training strategies for optical character recognition of historical documents. The main issue is the lack of the annotated data and its quality. We summarize several ways of synthetic data preparation. The main goal of this paper is to show and compare possibilities how to train a convolutional recurrent neural network classifier using the synthetic data and its combination with a real annotated dataset.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence Applications and Innovation
ISBN
978-3-030-19822-0
ISSN
1868-4238
e-ISSN
—
Number of pages
12
Pages from-to
362-373
Publisher name
Springer
Place of publication
Cham
Event location
Crete
Event date
May 24, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—