All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Czech Speech Synthesis with Generative Neural Vocoder

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955905" target="_blank" >RIV/49777513:23520/19:43955905 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_26" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-27947-9_26" target="_blank" >10.1007/978-3-030-27947-9_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Czech Speech Synthesis with Generative Neural Vocoder

  • Original language description

    In recent years, new neural architectures for generating high-quality synthetic speech on a per-sample basis were introduced. We describe our application of statistical parametric speech synthesis based on LSTM neural networks combined with a generative neural vocoder for the Czech language. We used a traditional LSTM architecture for generating vocoder parametrization from linguistic features. We replaced a standard vocoder with a WaveRNN neural network. We conducted a MUSHRA listening test to compare the proposed approach with the unit selection and LSTM-based parametric speech synthesis utilizing a standard vocoder. In contrast with our previous work, we managed to outperform a well-tuned unit selection TTS system by a great margin on both professional and amateur voices.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA19-19324S" target="_blank" >GA19-19324S: Fully Trainable Deep Neural Network Based Czech Text-to-Speech Synthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 22nd International Conference, TSD 2019, Ljubljana,Slovenia, September 11-13, 2019, Proceedings

  • ISBN

    978-3-030-27946-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    307-315

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ljubljana, Slovenia

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article