The Fučík Spectrum as Two Regular Curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956200" target="_blank" >RIV/49777513:23520/19:43956200 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-26987-6_12" target="_blank" >http://dx.doi.org/10.1007/978-3-030-26987-6_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-26987-6_12" target="_blank" >10.1007/978-3-030-26987-6_12</a>
Alternative languages
Result language
angličtina
Original language name
The Fučík Spectrum as Two Regular Curves
Original language description
In this paper, we investigate the structure of the Fučík Spectrum for the second order boundary value problem with one non-local boundary condition. We provide a new compact form of the implicit description of the Fučík Spectrum in the first quadrant. Presented compact form of the implicit description can be easily implemented in numerical computing packages or computer algebra systems and also leads to a suitable parametrization of the Fučík Spectrum. We prove that the Fučík Spectrum consists of two regular curves of $C^{1}$ class and parametrizations for both regular curves are provided. Presented approach can be adopted for problems with other non-local boundary conditions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-03253S" target="_blank" >GA18-03253S: Differential equations with special types of nonlinearities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nonlinear Analysis and Boundary Value Problems
ISBN
978-3-030-26986-9
ISSN
2194-1009
e-ISSN
2194-1017
Number of pages
22
Pages from-to
177-198
Publisher name
Springer
Place of publication
Cham, Switzerland
Event location
Santiago de Compostela
Event date
Sep 4, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—