All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956220" target="_blank" >RIV/49777513:23520/19:43956220 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11140/19:10402654

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CBMS.2019.00064" target="_blank" >http://dx.doi.org/10.1109/CBMS.2019.00064</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CBMS.2019.00064" target="_blank" >10.1109/CBMS.2019.00064</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels

  • Original language description

    A physiological model improves delivered healthcare, when constructing a medical device. Such a model comprises a number of parameters. While an analytical method determines model parameters, an evolutionary algorithm can improve them further. As evolutionary algorithms were designed on top of random-number generators, their results are not deterministic. This raises a concern about their applicability to medical devices. Medical-device algorithm must produce an output with a minimum guaranteed accuracy. Therefore, we applied de-randomized sequences to Meta-Differential Evolution instead of using a random-number generator. Eventually, we designed an optimization method based on zooming with derandomized sequences as an alternative to the Meta-Differential Evolution. As the experimental setup, we predicted glucose-level signal to cover a blind window of glucose-monitoring signal that results from a physiological lag in glucose transportation. Completely de-randomized differential evolution exhibited the same accuracy and precision as completely non-deterministic differential evolution. They produced 93% of glucose levels with relative error less than or equal to 15%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 IEEE 32nd International Symposium on Computer-Based Medical Systems

  • ISBN

    978-1-72812-286-1

  • ISSN

    2372-9198

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    269-274

  • Publisher name

    IEEE Computer Society Conference Publishing Services (CPS)

  • Place of publication

    Los Alamitos

  • Event location

    Cordóba

  • Event date

    Jun 5, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000502356600055