All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Using Stateful LSTM Networks for Key-Phrase Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956398" target="_blank" >RIV/49777513:23520/19:43956398 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_22" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-27947-9_24" target="_blank" >10.1007/978-3-030-27947-9_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Using Stateful LSTM Networks for Key-Phrase Detection

  • Original language description

    In this paper, we focus on LSTM (Long Short-Term Memory) networks and their implementation in a popular framework called Keras. The goal is to show how to take advantage of their ability to pass the context by holding the state and to clear up what the stateful property of LSTM Recurrent Neural Network implemented in Keras actually means. The main outcome of the work is then a general algorithm for packing arbitrary context-dependent data, capable of 1/ packing the data to fit the stateful models; 2/ making the training process efficient by supplying multiple frames together; 3/ on-the-fly (frame-by-frame) prediction by the trained model. Two training methods are presented, a window-based approach is compared with a fully-stateful approach. The analysis is performed on the Speech commands dataset. Finally, we give guidance on how to use stateful LSTMs to create a key-phrase detection system.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 22nd International Conference, TSD 2019, Ljubljana,Slovenia, September 11-13, 2019, Proceedings

  • ISBN

    978-3-030-27946-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    287-298

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ljubljana, Slovenia

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article