Computing projective equivalences of special algebraic varieties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43956685" target="_blank" >RIV/49777513:23520/20:43956685 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0377042719304418?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719304418?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2019.112438" target="_blank" >10.1016/j.cam.2019.112438</a>
Alternative languages
Result language
angličtina
Original language name
Computing projective equivalences of special algebraic varieties
Original language description
This paper is devoted to the investigation of selected situations when computing projective (and other) equivalences of algebraic varieties can be efficiently solved via finding projective equivalences of finite sets of points on the projective line. In particular, we design a method that finds for two algebraic varieties X, Y from special classes an associated set of automorphisms of the projective line (the so called good candidate set) consisting of suitable candidates for the subsequent construction of possible mappings X -> Y. The functionality of the designed approach is presented for computing pro- jective equivalences of rational curves, determining projective equivalences of rational ruled surfaces, detecting affine transformations between planar algebraic curves, and computing similarities between two implicitly given algebraic surfaces. When possible, symmetries of given shapes are also discussed as special cases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
367
Issue of the periodical within the volume
MAR 15
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
—
UT code for WoS article
000496861400013
EID of the result in the Scopus database
2-s2.0-85072192165