All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computing projective equivalences of special algebraic varieties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43956685" target="_blank" >RIV/49777513:23520/20:43956685 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0377042719304418?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719304418?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2019.112438" target="_blank" >10.1016/j.cam.2019.112438</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computing projective equivalences of special algebraic varieties

  • Original language description

    This paper is devoted to the investigation of selected situations when computing projective (and other) equivalences of algebraic varieties can be efficiently solved via finding projective equivalences of finite sets of points on the projective line. In particular, we design a method that finds for two algebraic varieties X, Y from special classes an associated set of automorphisms of the projective line (the so called good candidate set) consisting of suitable candidates for the subsequent construction of possible mappings X -&gt; Y. The functionality of the designed approach is presented for computing pro- jective equivalences of rational curves, determining projective equivalences of rational ruled surfaces, detecting affine transformations between planar algebraic curves, and computing similarities between two implicitly given algebraic surfaces. When possible, symmetries of given shapes are also discussed as special cases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

  • ISSN

    0377-0427

  • e-ISSN

  • Volume of the periodical

    367

  • Issue of the periodical within the volume

    MAR 15

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000496861400013

  • EID of the result in the Scopus database

    2-s2.0-85072192165