Effect of the lateral topographic density distribution on interpretational properties of Bouguer gravity maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43957212" target="_blank" >RIV/49777513:23520/20:43957212 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/gji/article-abstract/220/2/892/5601732?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/gji/article-abstract/220/2/892/5601732?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggz484" target="_blank" >10.1093/gji/ggz484</a>
Alternative languages
Result language
angličtina
Original language name
Effect of the lateral topographic density distribution on interpretational properties of Bouguer gravity maps
Original language description
Until recently, the information about the topographic density distribution has been limited to only certain regions and some countries, while missing in the global context. The UNB_TopoDens is the first model that provides the information about a lateral topographic density globally. The analysis of this model also reveals that the average topographic density for the entire continental landmass (excluding polar glaciers) is 2247 kg m−3. This density differs significantly from the value of 2670 kg m−3 that is typically adopted to represent the continental upper crustal density. In this study, we use the UNB_TopoDens density model to inspect how the topographic density variations affect interpretational properties of Bouguer gravity maps. Since this model provides also the information about density uncertainties of individual lithologies (main rock types), we estimate the corresponding errors in the Bouguer gravity data. Despite a new estimate of the average topographic density corresponds to relative changes of ∼16 per cent in values of the topographic gravity correction, these changes do not affect interpretational properties of Bouguer gravity maps. The anomalous topographic density distribution (taken with respect to the average density of 2247 kg m−3), however, modifies the Bouguer gravity pattern. We demonstrate that the gravitational contribution of anomalous topographic density is globally mostly within ±25 mGal, but much large values are detected in Himalaya, Tibet, central Andes and along the East African Rift System. Our estimates also indicate that errors in the Bouguer gravity data attributed to topographic density uncertainties are mostly less than ±15 mGal, but in mountainous regions could reach large values exceeding even ±50 mGal. Unarguably, the UNB_TopoDens model provides an improved information about the global topographic density variations and their uncertainties. Nevertheless, much more in situ measurements of rock density samples together with detailed 3-D geological models are still necessary to understand better the actual density distribution within the whole topography, particularly to mention a density change with depth.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geophysical Journal International
ISSN
0956-540X
e-ISSN
—
Volume of the periodical
220
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
892-909
UT code for WoS article
000506848400011
EID of the result in the Scopus database
2-s2.0-85086028356