On qualitative properties of solutions for elliptic problems with the p-Laplacian through domain perturbations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958009" target="_blank" >RIV/49777513:23520/20:43958009 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/eprint/YDPIEZTGFSWPT38MSPY6/full?target=10.1080/03605302.2019.1670674" target="_blank" >https://www.tandfonline.com/eprint/YDPIEZTGFSWPT38MSPY6/full?target=10.1080/03605302.2019.1670674</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2019.1670674" target="_blank" >10.1080/03605302.2019.1670674</a>
Alternative languages
Result language
angličtina
Original language name
On qualitative properties of solutions for elliptic problems with the p-Laplacian through domain perturbations
Original language description
We study the dependence of least nontrivial critical levels of the energy functional corresponding to the zero Dirichlet problem −Δ_p u=f(u) in a bounded domain Ω⊂R^N upon domain perturbations. Assuming that the nonlinearity f is superlinear and subcritical, we establish Hadamard-type formulas for such critical levels. As an application, we show that among all (generally eccentric) spherical annuli Ω least nontrivial critical levels attain maximum if and only if Ω is concentric. As a consequence of this fact, we prove the nonradiality of least energy nodal solutions whenever Ω is a ball or concentric annulus.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
ISSN
0360-5302
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
230-252
UT code for WoS article
000491846000001
EID of the result in the Scopus database
2-s2.0-85074414532