Construction of Minkowski Pythagorean hodograph B-spline curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958743" target="_blank" >RIV/49777513:23520/20:43958743 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0167839620300650" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167839620300650</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2020.101878" target="_blank" >10.1016/j.cagd.2020.101878</a>
Alternative languages
Result language
angličtina
Original language name
Construction of Minkowski Pythagorean hodograph B-spline curves
Original language description
Following and extending the recent results of Albrecht et all. (2017) for planar Pythagorean hodograph (PH) B-spline curves to the Minkowski 3-space, we introduce a class of Minkowski Pythagorean hodograph (MPH) B-spline curves. The distinguished property of these curves is that the Minkowski norm of their hodograph is a B-spline function. We focus mainly on the clamped case and using Clifford algebra representation we present formulas for their construction. The closed case is also mentioned. Then we solve two practical problems -- construction of MPH B-spline curves with control polygon close to a given control polygon, and construction of MPH B-spline curves going through given points. We emphasize symbolic solutions wherever it is possible. The results and approaches are illustrated on several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
80
Issue of the periodical within the volume
June 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
101878
UT code for WoS article
000537812800016
EID of the result in the Scopus database
2-s2.0-85084482036