On asymptotic behavior of Dirichlet inverse
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958984" target="_blank" >RIV/49777513:23520/20:43958984 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1793042120500700" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1793042120500700</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793042120500700" target="_blank" >10.1142/S1793042120500700</a>
Alternative languages
Result language
angličtina
Original language name
On asymptotic behavior of Dirichlet inverse
Original language description
Let f(n) be an arithmetic function with f(1)≠0 and let f−1(n) be its reciprocal with respect to the Dirichlet convolution. We study the asymptotic behavior of ∣∣f−1(n)∣∣ with regard to the asymptotic behavior of |f(n)| assuming that the latter one grows or decays with at most polynomial or exponential speed. As a by-product, we obtain simple but constructive upper bounds for the number of ordered factorizations of n into k factors.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Number Theory
ISSN
1793-0421
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
6
Country of publishing house
SG - SINGAPORE
Number of pages
18
Pages from-to
1337-1354
UT code for WoS article
000548536900012
EID of the result in the Scopus database
2-s2.0-85082101878