All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Multi-class Classification Approach to Blood Glucose Level Forecasting with Prediction Uncertainty Visualisation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959339" target="_blank" >RIV/49777513:23520/20:43959339 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-2675/" target="_blank" >http://ceur-ws.org/Vol-2675/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Multi-class Classification Approach to Blood Glucose Level Forecasting with Prediction Uncertainty Visualisation

  • Original language description

    A machine learning-based method for blood glucose level prediction thirty and sixty minutes in advance based on highly multiclass classification (as opposed to the more traditional regression approach) is proposed. An advantage of this approach is the possibility of modelling and visualising the uncertainty of a prediction across the entire range of blood glucose levels without parametric assumptions such as normality. To demonstrate the approach, a long-short term memory-based neural network classifier is used in conjunction with a blood glucose-specific data preprocessing technique (risk domain transform) to train a set of models and generate predictions for the 2018 and 2020 Blood Glucose Level Prediction Competition datasets. Numeric accuracy results are reported along with examples of the uncertainty visualisation possible using this technique.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The 5th International Workshop onKnowledge Discovery in Healthcare Data (KDH)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    80-84

  • Publisher name

    CEUR Workshop Proceedings (CEUR-WS.org)

  • Place of publication

    Německo

  • Event location

    Santiago de Compostela

  • Event date

    Aug 29, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article