Neural Multi-class Classification Approach to Blood Glucose Level Forecasting with Prediction Uncertainty Visualisation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959339" target="_blank" >RIV/49777513:23520/20:43959339 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-2675/" target="_blank" >http://ceur-ws.org/Vol-2675/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Neural Multi-class Classification Approach to Blood Glucose Level Forecasting with Prediction Uncertainty Visualisation
Original language description
A machine learning-based method for blood glucose level prediction thirty and sixty minutes in advance based on highly multiclass classification (as opposed to the more traditional regression approach) is proposed. An advantage of this approach is the possibility of modelling and visualising the uncertainty of a prediction across the entire range of blood glucose levels without parametric assumptions such as normality. To demonstrate the approach, a long-short term memory-based neural network classifier is used in conjunction with a blood glucose-specific data preprocessing technique (risk domain transform) to train a set of models and generate predictions for the 2018 and 2020 Blood Glucose Level Prediction Competition datasets. Numeric accuracy results are reported along with examples of the uncertainty visualisation possible using this technique.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The 5th International Workshop onKnowledge Discovery in Healthcare Data (KDH)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
5
Pages from-to
80-84
Publisher name
CEUR Workshop Proceedings (CEUR-WS.org)
Place of publication
Německo
Event location
Santiago de Compostela
Event date
Aug 29, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—