Automatic Coral Detection using Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959672" target="_blank" >RIV/49777513:23520/20:43959672 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-2696/paper_63.pdf" target="_blank" >http://ceur-ws.org/Vol-2696/paper_63.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Automatic Coral Detection using Neural Networks
Original language description
This paper presents methods that were utilized in the ImageCLEFcoral 2020 challenge. The challenge contains two following subtasks: automatic coral reef annotation and localization, and automatic coral reef image pixel-wise parsing. In the first subtask, we tested two methods - SSD, and Mask R-CNN. In the second subtask, we tested only Mask R-CNN. Performance improvements were achieved by careful cleaning of the dataset and by both offline and online data augmentations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CLEF 2020 Working Notes
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
CEUR Workshop Proceedings
Place of publication
Thessaloniki
Event location
Thessaloniki, Greece
Event date
Sep 22, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—