Neural Sign Language Synthesis: Words Are Our Glosses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959826" target="_blank" >RIV/49777513:23520/20:43959826 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9093516" target="_blank" >https://ieeexplore.ieee.org/document/9093516</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV45572.2020.9093516" target="_blank" >10.1109/WACV45572.2020.9093516</a>
Alternative languages
Result language
angličtina
Original language name
Neural Sign Language Synthesis: Words Are Our Glosses
Original language description
This paper deals with a text-to-video sign language synthesis. Instead of direct video production, we focused on skeletal models production. Our main goal in this paper was to design a fully end-to-end automatic sign language synthesis system trained only on available free data (daily TV broadcasting). Thus, we excluded any manual video annotation. Furthermore, our designed approach even do not rely on any video segmentation. A proposed feed-forward transformer and recurrent transformer were investigated. To improve the performance of our sequence-to-sequence transformer, soft non-monotonic attention was employed in our training process. A benefit of character-level features was compared with word-level features. We focused our experiments on a weather forecasting dataset in the Czech Sign Language.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2020 IEEE Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-1-72816-553-0
ISSN
2472-6737
e-ISSN
2642-9381
Number of pages
9
Pages from-to
3384-3392
Publisher name
IEEE
Place of publication
USA
Event location
Snowmass Village, CO, USA (385)
Event date
Mar 1, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000578444803049