All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synthetic Speech Evaluation by Differential Maps in Pleasure-Arousal Space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959828" target="_blank" >RIV/49777513:23520/20:43959828 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-60276-5_41" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-60276-5_41</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-60276-5_41" target="_blank" >10.1007/978-3-030-60276-5_41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synthetic Speech Evaluation by Differential Maps in Pleasure-Arousal Space

  • Original language description

    The paper deals with automatic evaluation of the quality of synthetic speech using Gaussian mixture models (GMM) for classification in the Pleasure-Arousal (P-A) scale and subsequently calculated 2D and 3D P-A differentials maps. The speech synthesized from the voice of a speaker is compared with the original voice of the same speaker. Three methods of speech synthesis are ordered by descending 3D perceptual distances from the original speech material. Basic experiments confirm the principal functionality of the developed system. The detailed analysis shows a great influence of the number of mixture components, the size of the processed speech material, and the type of the database for GMM creation on partial results of the continual P-A detection and the final results. The objective evaluation results are finally compared with the subjective ratings by human evaluators.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA19-19324S" target="_blank" >GA19-19324S: Fully Trainable Deep Neural Network Based Czech Text-to-Speech Synthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer 22nd International Conference, SPECOM 2020, St. Petersburg, Russia, October 7-9, 2020, Proceedings

  • ISBN

    978-3-030-60275-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    424-434

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    St. Petersburg, Russia

  • Event date

    Oct 7, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article