Skinning of systems of circles by MPH B-spline curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960274" target="_blank" >RIV/49777513:23520/20:43960274 - isvavai.cz</a>
Result on the web
<a href="https://2020.csgg.cz/files/Proceedings_CGG_2020_online.pdf" target="_blank" >https://2020.csgg.cz/files/Proceedings_CGG_2020_online.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Skinning of systems of circles by MPH B-spline curves
Original language description
Skinning of an ordered sequence of planar or spatial shapes can be viewed as a particular analogy to the interpolation of point data sets. In this contribution we would like to present how easy and straightforward is to use the Hermite interpolation algorithms with clamped MPH B-spline curves for the construction of the skins of systems of circles. All the presented schemes are purely symbolic. The resulting interpolants are obtained using special properties of B-spline basis functions and via solving special equations in Clifford algebra Cl_2,1.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů