Influence of singular weights on the asymptotic behavior of positive solutions for classes of quasilinear equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960506" target="_blank" >RIV/49777513:23520/20:43960506 - isvavai.cz</a>
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8942" target="_blank" >http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8942</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2020.1.73" target="_blank" >10.14232/ejqtde.2020.1.73</a>
Alternative languages
Result language
angličtina
Original language name
Influence of singular weights on the asymptotic behavior of positive solutions for classes of quasilinear equations
Original language description
Main objective of this paper is to study positive decaying solutions for a class of quasilinear problems with weights. We consider one dimensional problems on an interval which may be finite or infinite. In particular, when the interval is infinite, unlike the known cases in the history where constant weights force the solution not to decay, we discuss singular weights in the diffusion and reaction terms which produce positive solutions that decay to zero at infinity. We also discuss singular weights that lead to positive solutions not satisfying Hopf’s boundary lemma. Further, we apply our results to radially symmetric solutions to classes of problems in higher dimensions, say in an annular domain or in the exterior region of a ball. Finally, we provide examples to illustrate our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-03253S" target="_blank" >GA18-03253S: Differential equations with special types of nonlinearities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
73
Country of publishing house
HU - HUNGARY
Number of pages
23
Pages from-to
1-23
UT code for WoS article
000601298500001
EID of the result in the Scopus database
2-s2.0-85098334034