All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of singular weights on the asymptotic behavior of positive solutions for classes of quasilinear equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960506" target="_blank" >RIV/49777513:23520/20:43960506 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8942" target="_blank" >http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8942</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14232/ejqtde.2020.1.73" target="_blank" >10.14232/ejqtde.2020.1.73</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of singular weights on the asymptotic behavior of positive solutions for classes of quasilinear equations

  • Original language description

    Main objective of this paper is to study positive decaying solutions for a class of quasilinear problems with weights. We consider one dimensional problems on an interval which may be finite or infinite. In particular, when the interval is infinite, unlike the known cases in the history where constant weights force the solution not to decay, we discuss singular weights in the diffusion and reaction terms which produce positive solutions that decay to zero at infinity. We also discuss singular weights that lead to positive solutions not satisfying Hopf’s boundary lemma. Further, we apply our results to radially symmetric solutions to classes of problems in higher dimensions, say in an annular domain or in the exterior region of a ball. Finally, we provide examples to illustrate our results.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-03253S" target="_blank" >GA18-03253S: Differential equations with special types of nonlinearities</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Qualitative Theory of Differential Equations

  • ISSN

    1417-3875

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    73

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    23

  • Pages from-to

    1-23

  • UT code for WoS article

    000601298500001

  • EID of the result in the Scopus database

    2-s2.0-85098334034