SmartCGMS as a Testbed for a Blood-Glucose Level Prediction and/or Control Challenge with (an FDA-Accepted) Diabetic Patient Simulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43961666" target="_blank" >RIV/49777513:23520/20:43961666 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1877050920323164" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877050920323164</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2020.10.048" target="_blank" >10.1016/j.procs.2020.10.048</a>
Alternative languages
Result language
angličtina
Original language name
SmartCGMS as a Testbed for a Blood-Glucose Level Prediction and/or Control Challenge with (an FDA-Accepted) Diabetic Patient Simulation
Original language description
Diabetic patient desires to avoid hypo- and hyperglycemic episodes, which result from insufficient insulin production. As the diabetes disease progresses, it requires an advance control of external insulin administration with an insulin pump. Given the importance of blood-glucose level prediction for the insulin therapy, there is a Blood-Glucose Level Prediction Challenge. This prediction is based on a post-mortem dataset, which include a number of signals related to the daily life of a diabetic patient. We propose replacing these post-mortem signals with an in-silico diabetic patient. For this purpose, we can use the SmartCGMS continuous glucose monitoring and controlling framework together with an FDA-accepted diabetic patient simulation. As a result, a competing researcher have the same conditions as a developer of a real-life insulin pump, connected to a real diabetic patient. When using SmartCGMS, simulated, prototyped and real devices can work together. This approach reduces the difference between laboratory and practical results, thus increasing the level of realism for the entire challenge. As a report on the current SmartCGMS state, we describe the previously unpublished features, which enable an improved glucose level prediction and/or control challenge
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Procedia Computer Science 177
ISBN
—
ISSN
1877-0509
e-ISSN
—
Number of pages
9
Pages from-to
354-362
Publisher name
Elsevier
Place of publication
—
Event location
Madeira, Portugalsko
Event date
Nov 2, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—