All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Comparison of XGBoost and Convolutional Neural Networks for Glottal Closure Instant Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962410" target="_blank" >RIV/49777513:23520/21:43962410 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-83527-9_38" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-83527-9_38</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83527-9_38" target="_blank" >10.1007/978-3-030-83527-9_38</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Comparison of XGBoost and Convolutional Neural Networks for Glottal Closure Instant Detection

  • Original language description

    In this paper, we progress further in the development of an automatic GCI detection model. In previous papers, we compared XGBoost with other supervised learning models just as with a deep one-dimensional convolutional neural network. Here we aimed to compare a deep one-dimensional convolutional neural network, more precisely the InceptionV3 model, with XGBoost and context-aware XGBoost models trained on the same size datasets. Afterward, we wanted to reveal the influence of dataset consistency and size on the XGBoost performance. All newly created models are compared while tested on our custom test dataset. On the publicly available databases, the XGBoost and context-aware XGBoost with the context of length 7 shows similar and better performance than the InceptionV3 model. Also, the consistency of the training dataset shows significant performance improvement in comparison to the older models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA19-19324S" target="_blank" >GA19-19324S: Fully Trainable Deep Neural Network Based Czech Text-to-Speech Synthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 24th International Conference, TSD 2021, Olomouc, Czech Republic, September 6–9, 2021, Proceedings

  • ISBN

    978-3-030-83526-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    448-456

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Olomouc, Czech Republic

  • Event date

    Sep 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article